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Abstract

An effective Lewis number is calculated for situations where temperature and mass fraction gradients are very large
by defining effective thermal and mass diffusivities; such situations may occur in systems where there is more than one
chemical component, and in particular under supercritical conditions. The definitions evolve from a model assuming
that derivatives of certain functions are small with respect to those of the dependent variables. In the model, Soret and
Dufour effects are included and Shvab—Zeldovich-like variables are defined to remove the coupling between the operators
of the differential equations for temperature and mass fractions. Results from calculations using binary systems of
chemical components, using both isolated fluid drops and interacting fluid drops, show that under supercritical
conditions, depending upon the compounds, the effective Lewis number can be 2-40 times larger than the traditionally
calculated Lewis number and that the spatial variation of the two numbers is different. For the values of the thermal
diffusion factor used in the calculations, the Soret and Dufour effects are negligible; the discrepancy between the
traditional and effective Lewis numbers is due to the combined effect of the small mass diffusion factor and the difference
between the specific enthalpies of the two compounds. Parametric variations show that the effective Lewis number
increases with increasing pressure and decreasing surrounding gas temperature. Closer drop proximity in clusters results
in sharper peaks in the effective Lewis number due to the increased gradients of the dependent variables. © 1998 Elsevier
Science Ltd. All rights reserved.

Nomenclature R, universal gas constant
C, molar heat capacity at constant pressure t time

D diffusion coefficient T temperature

F,,. emission flux u velocity

h  molar enthalpy v molar volume

J molar flux

L elements of the transport matrix
Le Lewis number

m molar mass

Ma Mach number

n number of moles per unit volume
N number of species

Nuc  Nusselt number

p pressure

g Theat flux

r  generic coordinate

R, fluid entity radius
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X mole fraction
Y mass fraction.

Greek symbols

op mass diffusion factors
or thermal diffusion factor
o, thermal expansion ratio

B 1/(RJT)
y activity coefficient
Ar  grid size

N viscosity

A thermal conductivity
1 chemical potential

p density

T stress tensor

@, viscous dissipation.
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Subscripts

b fluid entity interface, at r = Ry
¢ critical point property

C cluster

d fluid drop

e external

eff effective

i,j species

m mass

si at the edge of the sphere of influence
T thermal.

Superscripts

i,j species

0 initial value

+(—) on the pure LO.(H,) side of r = R,.

1. Introduction

The Lewis number is a measure of the importance of
heat diffusion to the mass diffusion, Le = D{/D,, where
traditionally Dy = 4/(nC,); therefore Le provides an indi-
cation of what process controls a phenomenon being
studied. For example, in gases usually Le = O(1) which
means that heat and mass diffusion proceed at similar
rates. Departures from unity Le in gases have been dis-
cussed by Law et al. [1], Haworth and Poinsot [2], Lee et
al. [3], Joulin [4], Echekki and Freziger [5] and others
in the context of curved flames; and by Greenberg and
Ronney [6] in the context of flame spread over thin and
thick solid fuels. In contrast to gases, in liquids
Le = 0(10)-0(100) indicating that heat diffusion is fas-
ter than mass diffusion.

All existing studies of Le effects in gases have discussed
departures from the preferred unity assumption (because
it enables an easier mathematical treatment), but none
has questioned the validity of the Le calculation accord-
ing to the above relationships for portraying the relative
importance of heat and mass diffusion. This is because
the calculation of the Lewis number for gases and liquids
is straightforward when the molar flux depends only upon
the mole fraction gradients and the heat flux depends
only upon the temperature gradient. However, this is not
the most general situation, and is certainly not applicable
to a general fluid. The present study is devoted to the
investigation of departures from the traditional cal-
culation of Le; we address here the case of general fluids.
Because liquids and gases at atmospheric conditions
become fluids at supercritical conditions, this study is in
particular relevant to multicomponent systems at very
high pressures and temperatures characteristic of super-
critical conditions. We are particularly interested in the
behavior of compounds under supercritical conditions
because of the relevance to liquid rocket propulsion, gas
turbine engines and diesel engines.

Fluctuation—dissipation theory provides the most gen-
eral framework for defining the heat and mass diffusion
coefficients. The viewpoint of fluctuation theory is inter-
mediate to that of continuum and molecular-level
approaches and allows the modeling of transport pro-
cesses totally consistent with nonequilibrium ther-
modynamics (which continuum theory does not address);
at the same time it avoids the difficulties (and some of the
potential benefits, which are irrelevant here) of molecular
dynamics. For example: continuum theory does not give
relationships between fluxes and forces for a general fluid;
it is customary within the continuum formulation to
extend kinetic theory of rarified gases to describe more
general cases (as in [7]). Within the formalism of Keizer’s
fluctuation—dissipation theory [8, 9], the mass diffusivity
and thermal diffusivity appear in elements of a transport
matrix that relates the gradients of the chemical poten-
tials and of the temperature to the molar and heat fluxes
as follows:

N N
J; = Liqvﬁ_ Z Lifv(ﬁ'u/')s q= quVﬂ— Z quv(ﬁﬂf)
j=1 j=1

(1.1)

where L;; are the Fick’s diffusion elements, L, is the
Fourier thermal diffusion element, L, are the Soret
diffusion and L, are the Dufour diffusion elements. The
Onsager relations state that L; = L;and L;, = L. From
conservation of total and species mass in the system one
obtains the additional relations XVm,J,=0 and
=Y L,ym; =0 forje[l,N] and j = q.
Using the thermodynamic relationship

d(Buy) = Bv,dp—h,dIn T)+ <N§l 0, dX[> / X, (12

i=1
where
ap, = pX;0w;/0X, = 0X,/0X;+ X,01Iny,/0X; (1.3)

one can calculate J; from (1.1) and (1.2). Equations (1.1)—
(1.3) show another benefit of fluctuation theory in that
the relationship between fluxes and thermodynamics is
obvious; basically, the theory consistently extends gradi-
ent transport to far from equilibrium situations. Within
this framework, the expressions for the chemical poten-
tials can be derived for a general fluid and used in equa-
tion (1.2), which allows the consideration of both
possibly non-unity diffusion factors and transport effects
of the enthalpy and molar volumes with temperature
gradients and pressure gradients, respectively.

This formalism shows that the classical calculation of
Le can no longer indicate the relative importance of heat
and mass diffusion because of the additional con-
tributions that appear as non-diagonal terms. Thus, there
is a need to identify what is the equivalent of Dy and D,,
under general conditions, and investigate characteristic
values of their ratio, called here Le.
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In this paper we present a formalism for a calculation
of Le.; and show that under supercritical conditions the
existence of the nondiagonal terms in the transport equa-
tions enhances the heat diffusion and decreases the mass
diffusion, resulting in Le. larger than Le by a factor
that varies from approximately 2-40 depending on the
compounds and on the particular conditions of the cal-
culation. Additionally, we show that Le, is a non-
monotonic function of Le, and thus that the variation
of Le cannot be considered to represent even a relative
qualitative estimate of the importance of heat and mass
diffusion. In Section 2 we develop the expression for Le g
for a binary component fluid in a general one-dimen-
sional geometry; the analysis can be easily extended to a
multicomponent fluid in multidimensions. In Section 3
we calculate Le.; for both isolated and collections of
spherical entities (fluid drops) of LO, in fluid H, at high
pressures and investigate the importance of the thermal
diffusion factor upon the results. Results are also pre-
sented for isolated C;H 4 fluid drops in fluid N, to identify
the impact of the compounds identity upon the results.
Finally, Section 4 is devoted to conclusions.

2. Model

In a single coordinate configuration, the species and
energy equations for a binary component fluid can be
written as follows:

Y, 0Y, Y, Y,

oy v
Pay TPug =mVed pam e = —m,

(T i\ ot (P kP )y gt
"o \or T ) T o T L

—my(hy/m; —hyJmy))V-J  (2.2)
where o, = [(00/0T),x 1/v, J= —Ji, =(my/m)Js,. As
shown by equation (1.1), the general forms of J and
q= —q,are

2.1

Y or T or T or
oT Y, op’
q=4, 61‘+C" or or” @3)

Expressions of the gradients multiplicative coefficients in
equation (2.3) appear in the Appendix.

The terms proportional to the gradients of the dynamic
pressure in the expressions for J and ¢ will be neglected
in the following because those gradients are proportional
to Ma* and Ma « 1, while coefficients C, and B, are no
larger than other coefficients in the equations; spatial
variations of p’ were confirmed to be small by results
from calculations of isolated entities of LO, in fluid H,
at high pressures [10]. The viscous dissipation term has

been neglected as well because it is expected to be much
smaller than the other terms in equation (2.2).

If the set I' = (Y, T) is considered a vector primitive
variable, the differential operator £T" = p oI'/ot+ pu 0T’/
or—1/ryo(rz or'/or)/dr, where s=0 for planar
geometry and s = 2 for spherical geometry, represents
the set of conservation equations ZI" = 0, where 2 is
a generic diffusion coefficient matrix. When Fick’s and
Fourier’s laws accurately describe molar and heat fluxes,
respectively, the operators for the two variables Y, and
T are uncoupled because the diffusion term in the equa-
tion for each variable contains only derivatives of that
variable; & is diagonal. In that situation, one defines the
traditional Le as the ratio of the diffusive length scales of
the temperature and mass fractions; the ratio is calculated
using the coefficients of the diffusive terms. In the more
general situation where the flux matrix is given by equa-
tion (2.3) instead of the Fick and Fourier laws, the differ-
ential operators for the two variables are no longer
uncoupled because in each equation the diffusion term
contains derivatives of both variables. The differential
operators are now coupled, and this coupling prohibits a
simple definition of appropriate diffusion length scales
for heat and mass transfer.

Similar to the classical situation where Le relates the
diffusive length scales of the mass fractions and tem-
perature given by the coefficients of the diffusive terms
when the differential operators of the species and tem-
perature equations are uncoupled, and thus the diffusion
term in the differential operator is given by multiplying a
diagonal matrix with the spatial derivative, one must find
here equivalent variables for which the matrix of the
system of equations (2.1) and (2.2) has a diagonal form.
Given the complexity of equations (2.1)—(2.3), a simple,
accurate combination of variables cannot be found a
priori. Tambour and Gal-Or [11] have performed such
a diagonalization for compressible, laminar boundary
layers and stagnation flows with blowing or suction; the
same method was used by Greenberg et al. [12] in laminar
jets and by Greenberg [13] for planar premixed gaseous
flames. Similar to the previous work [11-13], the strategy
is here to find a solution that will be valid under certain
assumptions.

The first assumption is that of a boundary layer spatial
variation at a location that would be a surface under
subcritical conditions, r = Ry, in which case the medium
for r < Ry is a liquid (component 1) and the medium for
r > Ry is a gas (component 2). The analysis will then be
valid for |Ry—r| « Ry. In subcritical conditions, the
liquid evaporates (except for the particular case of satu-
ration) and thus pu = F_,; under supercritical conditions
for component 1, one may still define the flux in the same
manner although its meaning is not necessarily that of
evaporation (depending on the surface mixture critical
point). The second assumption is that of quasi-steady
behavior; although under supercritical conditions a
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quasi-steady behavior is not necessarily attained (because
the value of the density ratio p(RJ)/p(Ry) does not
remain « 1 during the calculation), this assumption is
appropriate for finding order of magnitude scales rather
than an entirely accurate solution for the variables. It is
the form of the steady, convection—diffusion equation
solution that provides the intuition about the assump-
tions to be further made in the model. This form is an
exponential dependence on a spatial integral multiplied
by a more weakly varying function [15].

The point of departure for finding an approximate
solution are Shvab—Zeldovich-like variables [7] that are
combinations of Y, and 7. In the Shvab-Zeldovich for-
malism for transient combustion in a diffusive—convective
system, linear combinations of variables are used in con-
junction with a series of assumptions to eliminate the
reaction term from all but one equation and render the
conservation equations easier to solve. In the present
context, the combined variables

Q=Y —w;T and Qr=T—wyY, (2.4)

are defined to diagonalize the operators of the differential
equations; the quantities wr and wy are calculated below
by satisfying the conservation equations. Once equations
(2.4) are replaced into the original equations (2.1)—(2.3),
Qy and Qr can be shown to be approximately governed
by the following equations for appropriately chosen wr
and oy

00y 0y 10, 0
14 0[ ems 0}" - " ar (r pDcff Gr (25)
0QT OQT 1 a . OQT
B L 9 i) E | 2.
P a[ + ems ar e ar |:r (mj'eﬂ/cp) ar ( 6)

Equations (2.5) and (2.6) are obtained under the assump-
tion that spatial and temporal derivatives of functions wy
and wy are smaller than those of Qy and Q; and can thus
be neglected. This assumption is satisfied if equations
(2.5) and (2.6) are quasi-steady and if the multipliers of
the exponential functions which are the characteristic
solutions of the diffusion—convection equation have a
smaller variation than the exponential functions. Quasi-
steadiness of equations (2.5) and (2.6) is satisfied if
(Fums)®> » p" D 0/0t and (Fipn.)® > (mplea/C,) 0/01. Small
variation of the multipliers with respect to the exponen-
tial functions occurs if F, Ar> pD, and F.,Ar >
M./ C,, where Ar is the grid size.

The effective transport coefficients in equations (2.5)
and (2.6) are calculated from the original equations as
follows:

pDe = my A;—wrmC/C, 2.7
et = A:[_wY(ml/m)CpB./ (2.8)
where

A, =A,—m,(h,/m,—hy/m,)B,
and (2.9)

Cf, = Cq_ml(hl/}nl —hy/m,)A,
with
or =om,C,B;/m and wy= —0oC, (2.10)

where ¢ is the positive root of the second-order algebraic
equation

(m,/m)C,B,Cyo* +[A,— (m,/m)C,AJo—1 =0 (2.11)
the other root being unphysical as it leads to singular
behavior. These equations allow the calculation of D.g,
A and Le.y = A/ (nC,D.q) once the values of the depen-
dent variables are known.

Although the above analysis is strictly valid only within
a boundary layer, it is also conceptually correct in any
region where there are large variations of the dependent
variables. Thus, the above expressions show the correct
transport scales for any region of steep gradients. As
such, the ratio of the effective transport coefficients will
be calculated below and compared to that of the con-
ventional transport coefficients for specific situations
involving large dependent variable gradients.

To illustrate the model, calculations are performed for
spherical fluid drops, either isolated or in clusters where
they may collectively interact. The general model for
isolated fluid drops is described in [10] and is based upon
the fluctuation—dissipation theory discussed above whose
main results are equations (2.1)—(2.3). Additional to the
conservation equations (2.1) and (2.2), the model of Har-
stad and Bellan [10] also solves a mass conservation equa-
tion. The boundary conditions at the evolving interface
initially between pure LO, and mainly H, fluid, and in
the far field are also described in detail in [10]. The cal-
culation of the equations of state is described elsewhere
[17] and the models for the transport coefficients is dis-
cussed in Harstad and Bellan [10]. For cluster studies,
there are additional mass, species and energy con-
servation equations relating the behavior of all entities in
the cluster [14], the boundary conditions between the
cluster and its surrounds.

3. Results

To illustrate the difference between the traditional Le
and Le.; we present calculations obtained from the solu-
tion of isolated fluid drops and clusters of fluid drops of
LO, in H, at supercritical conditions. In order to evaluate
the importance of the Soret and Dufour terms, we also
present results from isolated fluid drop calculations with
null o.r as well as with one non null value smaller than the
baseline choice of o = 0.05 [16]. Finally, to investigate
possible departures from the conclusions based on results
from the LO,—H, system, we also present results for iso-
lated C;H ¢ fluid drops in fluid N,; obviously, a myriad
of binary systems can be investigated and by its nature
the present study cannot be exhaustive.
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3.1. Isolated fluid drops: the LO—H, system

3.1.1. Baseline behavior

Figure 1 illustrates the radial variation of Le and Le.
at different times for an isolated fluid drop having
R} =50x10"* ¢cm and T, = 100 K (the fluid drop
temperature is assumed initially uniform), in far field
surroundings characterized by T% = 1000 K, p = 80 MPa
and Y9 = 0. The fluid drop is initially composed of pure
LO, (T.,=154.6 K, p.=5.043 MPa), while the sur-
rounding is hydrogen (7, = 33.2 K, p. = 1.313 MPa); in

0.030 0.040

0.000 0.010 0.020 0.030 0.040
(c) r,cm

Fig. 1. Spatial variation of the traditional (a) and the effective
(b) Lewis numbers, and the variation of Ley with Le (c) at
various times for Ry = 50 x 10~* cm, R% = 0.1 cm, T3, = 100
K, T% =1000 K, Y2 =0, and p = 80 MPa. The curves cor-
respond to the following times: 0.0 s (—), 6x 107 s (---),
1.0x107% s (---+-), 14x107% s (---), 2.0x107% s (—-),
2311072 s (----).

order to avoid an initial unphysical discontinuity, a small
amount of oxygen exists initially in the drop surround-
ings, its distribution vanishing with increasing r. The far
field conditions 7, = 1000 K and Y. = 0 are at a distance
(R2— RY) from the drop interface, where RS = 0.1 cm.

The spatial variation of Le.; is essentially different
from that of Le in that it is nonmonotonic even after the
memory of the initial condition is lost [the # = 0 curves
do not appear in any of the Le.; plots, throughout this
study, because the value of Le.; (r = RY) is off scale].
This is because Le.; implicitly accounts for Y, and T
gradient effects; these Y, and T gradients do not occur at
the same location under supercritical conditions. Thus,
the spatial variation of Le, is directly related to the
variation of Y, and T gradients as follows: for small r,
the shallow part of the curves corresponds mostly to
the large 07/0r, Y, being mostly uniform, the temporal
increase of Ley is due to the increased 7. The strongly
increasing branch of Le.; corresponds to the region of
large 0Y,/0r and the location of the maximum Le.; is
directly related to the maximum Y, gradient. Finally, the
decreasing part of the Le. curves corresponds to the
decreasing 0Y,/0r and the asymptotic leveling of 7. In
contrast, the Le spatial variation reflects only the depen-
dence of Dt and D,, upon composition and 7. An elim-
ination of the spatial variation between Le and Le.;
results in the plots presented in Fig. 1(c): Ley vs Le
at different times. Examination of the curves in Fig. 1
indicates that the additional coupling terms result in an
enhancement of the thermal diffusivity with respect to
the mass diffusivity. More precisely, tedious manipu-
lations of equations (2.7)—(2.11) and (A.1)—(A.6) in the
Appendix show that in fact the thermal diffusivity is
effectively increased whereas the mass diffusivity is effec-
tively decreased. For the conditions used to obtain the
results depicted in Fig. 1, the ratio Le.s/Le is approxi-
mately 20 in the inner part of the interface, whereas on
the outer side of the interface it reaches a maximum of
60 and a minimum of three.

The fact that Le is a multivalued function of Le.s (see
Fig. 1(c)) is a warning that Le cannot be even considered
a qualitative estimate of the true relative importance of
heat to mass diffusion at different spatial locations. More-
over, whereas the values of Le, indicate that heat
diffusion exceeds mass diffusion at all locations, Le indi-
cates erroncously that mass diffusion dominates heat
diffusion at all times for r < R}. The almost-complete
coincidence of all curves in Fig. 1(c) indicates that for a
given geometry and initial conditions, at each spatial
position there is an almost-unique relationship between
the ratio of the transport coefficients and the ratio of the
effective transport coeflicients (but not vice versa). Since
both the transport coefficients and the effective transport
coefficients depend upon Y, and T (whose variation is
governed by the conservation equations) this coincidence
is not obvious and its meaning is not immediately appar-
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ent. Further results presented below for the C;H;—N,
system indicate that this self-similarity is not a property
of the conservation equations and is instead related to
the system of compounds.

3.1.2. Parametric variation

Plots of Le and Le.; at t = 2 x 1072 s for same initial
conditions as the baseline calculations except for p,
appear in Fig. 2. Increasing p decreases both D,, and Dy

3.0

25

0.020 0.030 0.040
r,cm

(©)
L
100 | \ <
\
i
\
kS \
) \
50 P i
|
\¥
{}
. \
0 P 1 1 L L
0.5 1.0 1.5 2.0 2.5 3.0

Le
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(see Fig. 3), however, Dr = 1/(nC,) is a stronger function
of p. The spatial variation of all transport properties
results from the different p in the far field, and from the
combined effect of the different p upon the composition,
p and T'in the near field of the initial drop boundary [10].
In the inner region of mild gradients, both Le and Ley;
show similar variations, however, the absolute values
differ by a factor of approximately 20. In the far field
region (which similarly to the inner region has small
gradients), both Le and Le, show an asymptotic
behavior, their values differing by a factor of approxi-
mately three. The large difference of variation (approxi-
mately a factor of 50) occurs in the region of strong
gradients in accord with the boundary layer analysis. The
narrowing of the width between the increasing and the
decreasing branches of Le; indicates the reduction in
scales with increasing p. The variation of Le with Le
depicted in Fig. 2 indicates that in the low and high Le
regime there is an almost unique relationship to Le.
independent of p, whereas the influence of p is mainly felt
in the intermediate Le regime which occurs in the region
of large gradients.
Far field temperature effects upon the variation of Le
and Le,g are illustrated in Fig. 4 at t = 2 x 1072 s for two

P
o G-
.= " ;:ﬁ"/’

DD D
mw-l‘l\g“"g:'—_':—" 2o

0.00 1 1

Fig. 2. Spatial variation at 2 x 1072 s of the traditional (a) and
the effective (b) Lewis numbers and the variation of the effective
Lewis number with the traditional Lewis number (c) for several
pressures: 10 MPa (---), 20 MPa (-----), 25 MPa (- - -), 40 MPa

(=), 80 MPa (-- - -). Other initial conditions are those in Fig. 1
caption.

0.00 0.02 0.04
r,cm

Fig. 3. Spatial variation of the mass (a) and thermal (b) diffus-
ivities at 2 x 10~%s for the conditions listed in the caption of Fig.
2; the curves are also labelled identically.
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3.0
25
2.0
3 s
1.0
0.5
0.0 1 ! 1
0.000 0.010 0.020 0.030 0.040
r, cm
(b)
150 v T T T
100
S
50
0 -
0.000 0.010 0.020 0.030 0.040
r,cm
(c)
150 T T T T T
100
kS,
50 F
0
0.0

Fig. 4. Spatial variation at 2 x 10~% s of the traditional (a) and
the effective (b) Lewis numbers, and variation of the effective
Lewis number with the traditional Lewis number (c) at 2 x 1072
s. Plots are for two temperatures and three pressures; the other
conditions are those listed in Fig. 1 caption. Curves are labelled
as follows: T3 = 1000 K (—), (---) and (-----); and TS = 500
K (), (=) and (- --). Corresponding pressures are: 20 MPa
(—) and (---); 40 MPa (---) and (——); and 80 MPa (-----) and
(=)

temperatures at three values of p. In the lower p range,
the 7' and Y, gradients occur at increasing distance with
increasing temperature, whereas in the higher p regime
the distance between the largest gradients of 7" and Y,
becomes less sensitive to temperature. Unlike the vari-
ation of Le.; with Le as a function of p, the relationship
between Le and Le,; is sensitive to TY over the entire
range of Le.

The variation of Le and Le.4 with the initial fluid drop
size is depicted in Fig. 5 and shows the increase in scales
with increasing initial size.

To investigate the importance of Soret and Dufour
effects on the above results, calculations were performed
with o = 0 and 0.01 to compare with the baseline cal-
culations where o = 0.05. The results from the three sets
of calculations were virtually indistinguishable indicating
that for the range of o explored, the Soret and Dufour
terms are negligible. This result is in apparent con-
tradiction with the difference in magnitude and variation
of Le and Le. However, careful examination of equa-
tions (2.3) and (A.2) in the Appendix shows that the
contribution to the molar flux from the temperature
gradient contains two terms: the first is the difference in
the ratios of the molar enthalpies divided by the molar
masses, and the second is the Soret term. Spatial plots of
the molar enthalpy (not presented) show that the LO,
molar enthalpy is smaller than that of H,. Since addition-
ally the molar mass of oxygen is one order of magnitude
larger than that of hydrogen, this renders the first term
in equation (A.2) in the Appendix very large compared
to the Soret term. Moreover, in equation (2.3) the multi-

0.00 0.02 0.04 0.06 0.08
r,cm

(b)

0.08 0.10

Fig. 5. Spatial variation at 2 x 1072 s of the traditional (a) and
the effective (b) Lewis numbers at 25 MPa for initial fluid drop
radii 25x 10~*cm (---+-), 50 x 10~* cm (—) and 300 x 10~ * cm
(- - ). The other conditions are those of Fig. 1.
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plicative coefficient of the mass fraction gradient, A,
contains the factor o, which is unity for a two component
system under subcritical conditions [see equation (1.3)]
but is « 1 under the present conditions; the small value
of ap also contributes to the large value of Le, [see
equation (2.7)]. Such diffusion departures from the usual,
subcritical behavior were discussed by Cussler [18] who
points out that diffusion coefficients may approach a null
value near and above the critical condition.

The present conclusions depend on the uncertain value
range for or; to our knowledge, there is no data providing
o for the LO,—H, system as a function of T, p and Y.

3.2. Clusters of fluid drops: the LO—H, system

To investigate the effect of fluid drops proximity on
the relative importance of both conventional and effective
heat and mass diffusion, calculations were performed
with spherical clusters of these drops. The details model
for the fluid drops interactions is described elsewhere
[14]; the only results discussed here are those pertinent to
Le and Le.

Due to the essentially diffusive behavior at supercritical
conditions, interactions among fluid drops are not
expected unless these are in close proximity. The prox-
imity of the fluid drops is measured by a ‘sphere of influ-
ence’ around each drop that is centered at the drop center
and has a radius, Ry, which is half of the distance between
adjacent drops. Transfer from the cluster surroundings
to the cluster is modeled using the Nusselt number con-
cept [14]. As an example, in the baseline calculations
with R§=50x10"* cm, R%=2R}, R2=2 cm,
Ty, =100 K (T is uniform inside the drop),
T =T.=1000 K, p. = 80 MPa and Y,. = 0, the num-
ber of drops in the cluster is 5.92 x 10°.

Results illustrating the difference in variation for both
Le and Le.; with increasing R%/R for two different
pressures are depicted in Fig. 6. Decreasing R%/R] results
in an increase in Le and the effect is more pronounced at
larger pressures, however the maximum value attained is
always at the edge of the sphere of influence and remains
constant with pressure and drop packing. In contrast,
Ley attains its maximum inside the sphere of influence,
at the location of maximum Y, gradients [14] as already
explained above. Additionally, while the maximum Le;
value remains constant with drop packing, it increases
substantially with pressure in agreement with the known
larger augmentation of heat diffusion with respect to
mass diffusion as the pressure increases. Examination of
Fig. 6(b) shows that a factor of four increase in pressure
induces approximately a 25% increase in the maximum
value of Le.g.

Since gradients at the edge of the cluster boundary are
influenced by Nuc, the value of Nuc was varied from 10?
(baseline) to 10° in increments of factors of 10. The plots
appearing in Fig. 7 show the relative insensitivity of the

3.0

2.5

2.0

1 1 1 " L

0.000 0.005 0.010 0.015 0.020 0.025 0.030
r,cm

Fig. 6. Spatial variation at 10~2 s of the traditional (a) and the
effective (b) Lewis numbers for clusters of drops having
R} =50x10"* cm, Nuc=10*, R2=2 cm, T3, =100 K,
T =T,=1000 K and Y2 =Y, =0. Curves are labelled as
follows: R%/R3 =10 (—) and (---); 5 (——) and (--+-); 2 (----- )

and (- - -). Two pressures are considered: 20 MPa (—), (—-) and
(-+---); and 80 MPa (---), (----) and (- - ).

results to Nuc: it is only the size of the cluster that slightly
increases (due to increased heat transfer, see [14]) when
Nuc changes by three orders of magnitude, but the
maximum value of either Le or Le.q is not affected. How-
ever, the increase in Nu. corresponds to a reduction in T
ata given location as the volume of the sphere of influence
is increased; this affects the transport properties and
induces a reduction in Le. In contrast, no such monotonic
behavior is observed for Le.; due to the combined effect
of the transport properties variation and the reduction in
the gradients at larger Nuc.

3.3. Isolated fluid drops: the C;H c—N, system

The validity of the above conclusions for other systems
has been investigated by performing calculations for an
application relevant to gas turbine engines and diesel
engines: the C;H,—N, system. Examination of the molar
enthalpies of the two compounds shows that of n-heptane
to be smaller than that of nitrogen; since the molar mass
of n-heptane is larger than that of nitrogen, Soret and
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0.000 0.005 0.010

Fig. 7. Spatial variation at 1072 s of the traditional (a) and the
effective (b) Lewis numbers for Nuc = 10> (—), 10* (---), 10*
(-+--- ), and 10° (- - -). The other conditions are those of Fig. 6.

Dufour effects are again expected to be negligible. To
ascertain this expectation, calculations were performed
with o = 0.0, 0.01 and 0.05 and it was found that the
results were indeed virtually indistinguishable.

Figure 8 illustrates results from calculations for iso-
lated heptane drops in nitrogen for the following con-
ditions: R = 50x 10~* cm, R} = 0.03 cm, T3, = 400 K
(T§ is uniform inside the drop), T3 = T. = 1000 K,
p. =20 MPa and Y|, = 0. The ratio of Le to Le is only
approximately two for the maximum value independent
of location, and approximately three locally. Similar to
the LO,—H, system, the variations of Le.; and Le with r
are different indicating again that Le is not a good quali-
tative measure of relative heat to mass transfer. Plots of
Le.; vs Le (not illustrated) paralleling those of Fig. 1(c)
do not show the self-similar variation which seems to be
a peculiarity of the LO,—H, system.

4. Summary and conclusions
A model has been developed to calculate an effective

Lewis number for situations where large gradients of
species and temperature exist in a system. The model is

0.0 — 1 1 1 1
0.000 0005 0.010 0.015 0.020 0.025 0.030
r,cm
8
6

1 1 i 1 1 L

0.010 0015 0020 0.025 0.030
r,cm

0.000  0.005

Fig. 8. Spatial variation of the traditional (a) and the effective
(b) Lewis numbers for the n-heptane—nitrogen system for several
times: 0.0 s (—), 10725 (---), 2x 1072 s (-----) 2.25x 107> s
(-+9),2.5x107%s (-—) 3.3 x 10725 (- - - -). Other initial conditions
are: R} =50x10"* cm, R%=0.03 cm, T93,=400 K,
TS =T,=1000K, Y,. = 0and p = 20 MPa.

based upon the assumption that derivatives of certain
functions are small with respect to those of the dependent
variables. Shvab—Zeldovich-like variables are defined to
eliminate the coupling of the operators of the differential
equations for species and energy. Based upon the new
equations for the Shvab-Zeldovich-like variables, an
effective diffusivity and thermal conductivity are defined
and further calculated incorporating Soret and Dufour
effects. The model is applied to binary component sys-
tems at supercritical conditions.

Results obtained for the isolated LO, fluid drop in H,
show that the effective Lewis number can be larger than
the Lewis number by a factor of 40. Additionally, the
traditional Lewis number and effective Lewis number
have different spatial variations indicating that the tra-
ditional Lewis number is not even a qualitative measure
of the relative importance of heat and mass transfer.
Calculations performed by varying the value of the ther-
mal diffusion factor indicate that it is not the Soret and
Dufour terms that are responsible for the difference
between the traditional and effective Lewis numbers.
Instead, it is found that it is the combined effect of the
small mass diffusion factor and transport effects of the
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enthalpy with temperature gradients that are responsible
for the enhancement in heat diffusion over mass diffusion.
Similar calculations performed for fluid n-heptane drops
in nitrogen showed the same trends in that the Soret
and Dufour terms were unimportant within the range of
values used for the thermal diffusion factors. For the n-
heptane—nitrogen system, the effective Lewis number was
only a factor of 2-3 larger than the traditional Lewis
number. The uncertainty in the value and variation of
the thermal diffusion factor with temperature, pressure
and species molar fraction does not allow a definitive
conclusion as to the importance of Soret and Dufour
terms.

Parametric studies show that the effective Lewis num-
ber increases with increasing pressure and decreasing
temperature, and that closer drop proximity results in
sharper peaks in the effective Lewis number due to the
increased gradients of the dependent variables.

Since the Lewis number is both a theoretically im-
portant quantity and a quantity used in simplified esti-
mates by design engineers, the present findings have both
a fundamental and a practical value.
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Appendix

The expressions for the elements of the flux matrix are
as follows:

Ay, =(m/m,)nD o (A1)
B, = (my/m)nDy, {(m,m, X, X, /m)(hy/m,
—h/m)/(R.T?)+ X, X500/T}  (A2)
C, =(my/m)nD,,(m m, X, X,/m)(v,/m, —v,/m,)/(R,T)
(A.3)
A, = 2+ (xR, T)nD,,(mymy X, X, /m) (hy [m,
—h/m)/(R.T?) (A4
C, = [m*/(m my)InDyoperR,T (A.5)
B, = nD,ar(m;my X, X, /m) (v, /m; —v,/m,). (A.6)

According to the Gibbs—Duhem relationship
Up = dp; = Apy, Where ap = 1+ X:(01ny,/0X) 1,
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